
Explicit Storage and Analysis of Billions of
States using Commodity Computers

Yin Wang ∗ Jason Stanley ∗∗ Stéphane Lafortune ∗∗

∗ Hewlett-Packard Laboratories, Palo Alto, CA, USA
(e-mail: yin.wang@hp.com)

∗∗ Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA
(e-mail: {jasonsta,stephane}@umich.edu)

Abstract: The objective of this paper is to develop a framework and associated algorithms
for explicit state space exploration of discrete event systems that can scale to very large state
spaces. We consider classes of resource allocation systems (RAS), where a set of resources
are shared by concurrent processes. In particular, we focus on Gadara RAS, whose Petri net
representations have recently been used for liveness enforcement in multithreaded software. We
present a framework where each reachable state of the RAS is represented by a single bit.
We show how single-bit representations can lead to efficient implementations of supervisory
control algorithms. In order to support single-bit state representations, we develop two indexing
functions that map each state to a unique integer that serves as the corresponding index of the
state in the large bit array. These functions exploit the invariants of the given RAS. Experimental
results show that our techniques scale up to exploration and analysis of billions of states on
commodity computers.

Keywords: Resource Allocation Systems, Petri nets, Supervisory Control, State Space
Exploration

1. INTRODUCTION

A Resource Allocation System (RAS) consists of a set
of resource types and a set of process types (Reveliotis,
2005). Each process type has multiple stages, organized
according to the execution logic. Each stage requires
a combination of resources to complete. A state of an
RAS consists of one or multiple instances of different
process types running at different stages. A taxonomy of
various types of RAS is presented in Reveliotis (2005),
based on the process execution logic and the resource
allocation scheme. Petri nets are often used to represent
RAS. There are various classes of Petri nets defined for
different types of RAS; see (Ezpeleta and et al, 1995,
2002; Liao and et al, 2012a). The dynamics of an RAS
can be captured by a finite state automaton (Nazeem and
Reveliotis, 2011), which is equivalent to the reachability
graph obtained from the Petri net representation. While
the study of RAS originated in manufacturing systems,
theoretical results on RAS have recently been applied to
computer systems (Wang and et al, 2009).

The objective of this paper is to develop a framework and
associated algorithms for efficient state space exploration
of RAS that can scale to very large state spaces. The neces-
sity of performing state space exploration of RAS occurs
in several problem contexts, such as liveness enforcement.
Liveness enforcement has been a central research theme
in the RAS literature in the past two decades. Due to

1 This work was partially supported by NSF grant CCF-0819882
and an award from HP Labs Innovation Research Program.

the state explosion problem, early solutions focused on
structural properties using the Petri net representation
in order to avoid state space exploration. These solutions
typically sacrifice maximal permissiveness for computa-
tional efficiency. The survey paper Li et al. (2008) mentions
that the only maximally permissive solution is based on
the Theory of Regions (Ghaffari and et al, 2003), which
requires exploring all reachable states, and then uses linear
programming to synthesize a control place for each unsafe
state. With the complete knowledge of the reachable state
space, an alternative solution recently proposed in Nazeem
and Reveliotis (2011) uses decision trees to classify safe
and unsafe states and obtain a maximally permissive so-
lution. For a special class of Petri nets called Gadara
nets, structural analysis can be used to obtain a max-
imally permissive solution by bookkeeping unsafe states
in the form of coverings (Liao and et al, 2012b), which
can be proportional to the number of reachable states.
Since determining whether a state is safe or not is an
NP-complete problem even for one of the simplest classes
of RAS (Reveliotis, 2005), an exponential complexity al-
gorithm is unavoidable for provably achieving maximally
permissive control (unless P≡NP).

Model checking methods have been applied to systems
with astronomical numbers of states (Burch and et al,
1992). These methods do not store each state explic-
itly, but instead rely on state reduction and compression
techniques such as partial order reduction and symbolic
state representation to achieve scalability. These tech-
niques have been applied to generating Petri net state



spaces (Wolf, 2007). However, the effectiveness of state
reduction and compression heavily depends on the re-
dundancy and symmetry present in the system. When
applied to “minimalist” RAS, symbolic model checking
scaled up to only a few millions of states in our previ-
ous study (Wang and Wu, 2003). Coincidentally, other
application domains report scalability limits in the million
state range as well (Cimatti and Roveri, 2000; Jhala and
Majumdar, 2009). The computation time is almost always
proportional to the number of states.

It is well known that memory space rather than compu-
tation time is the bottleneck for explicit state enumera-
tion (Wolf, 2007). The fundamental challenge for efficient
storage is the data structure used to store and locate a
state. The latter is needed in order to skip states already
visited during the search process. One common technique
is to use a conflict-free hash function to store each state in
a compressed form (Wolf, 2007). Known hash functions are
typically very inefficient for RAS since they are designed
for generic Petri nets. In addition, these functions are
designed for efficient compression, not uncompression. The
latter is not needed in reachability-related analysis. But
for control synthesis with partial controllability, restoring
a state from its hash value is necessary to calculate the
supremal controllable nonblocking sublanguage; see (Cas-
sandras and Lafortune, 2008).

The alternative and novel state exploration solution pre-
sented in Nazeem and Reveliotis (2011) exploits features of
RAS and avoids state hashing. Each resource type defines
an invariant. States that satisfy all invariant constraints
subsume all reachable states, and typically not by much.
Based on this observation, Nazeem and Reveliotis (2011)
propose to enumerate all solutions of invariant equations,
sort them, and use binary search to locate a state during
state space exploration. However, we have observed that
this approach does not scale up to a billion states because
it needs to explicitly store all states satisfying invariant
constraints. For example, using the random RAS generator
that we have constructed, a system of a billion reachable
states typically has more than 200 stages. The number of
states satisfying invariant constraints is typically twice of
the reachable states, i.e., two billion. These systems have
unit resource capacity so each stage has at most one pro-
cess instance. Therefore we can use 200 bits to represent a
state, or 25 bytes. The memory space for two billion sates is
50 GB. For general Disjunctive/Conjunctive (D/C)-RAS
with larger resource capacities, terabytes of memory are
needed if we use a 32-bit integer to record the number of
instances at each stage. External storage is not a viable
option either due to its high latency. For example, a
NAND-based Solid State Disk has a read latency of at
least 25µs due to its physical characteristics. Assuming
zero read time, locating a state in a billion entry array
requires around 30 accesses, or 750µs. It would therefore
take 208 hours to explore one billion states even if we
query each state just once. Using mechanical disks would
take years. For maximally permissive control solutions,
experiments reported in the literature are typically limited
to a few million states or less (Li et al., 2008; Nazeem and
Reveliotis, 2011; Nazeem and et al, 2011; Liao and et al,
2011).

In this paper, we present a framework and carefully crafted
state manipulation algorithms that can explicitly store and
analyze billions of states efficiently using a commodity
computer. Our proposal is based on the idea of using a
single bit to represent a state, which we show can lead to
efficient implementations of state exploration and super-
visory control algorithms. The key difficulty of this single-
bit representation is the indexing function that maps each
state to a unique integer serving as the index of the state
in the large bit array. Exploiting the invariants of certain
classes of RAS, we develop two indexing functions with
different space-time tradeoffs. In addition to these novel
indexing functions, our implementation applies numerous
optimization techniques. Most notably, we implement mul-
tithreading to achieve almost linear speedup in a multicore
computer. Under this bit-representation framework, we
further implement the basic supervisory control algorithm
that calculates the supremal controllable nonblocking sub-
set of states with respect to partial controllability. When
applied to randomly generated RAS with a billion states,
our program finishes state exploration and control synthe-
sis in a few hours using less than 5GB of memory on an
iCore 7 desktop.

The ability to analyze and control RAS in the billion states
range is a novel contribution of this paper, as we are
not aware of other methods for synthesizing maximally
permissive solutions that can handle such large state
spaces in a reasonable amount of time using commodity
computers. Our tool, along with the random Gadara RAS
generator that we use in this paper, are available open
source at Gadara (2012).

This paper is organized as follows. We start with a de-
scription of the RAS model and a presentation of the basic
search algorithm in Section 2. We then present our main
results regarding the single-bit state representation and
associated mapping functions in Section 3. Section 4 gives
a brief description of our implementation, while Section 5
presents experimental results that demonstrate the scala-
bility properties of our approach.

2. SYSTEM MODEL AND SEARCH ALGORITHMS

2.1 Resource Allocation Systems

Definition 1. (Reveliotis, 2005) A Resource Allocation
System is defined as a 4-tuple Φ = ⟨R,C,P, D⟩ where:
(1) R = {r1, ..., rm} is the set of resource types.
(2) C : R → Z+ defines the capacity of each resource

type, which we abbreviate as C(ri) ≡ Ci

(3) P = {Π1, ...,Πn} is the set of process types. Each type
Πj is a composite ⟨Sj ,Gj⟩, where Sj = {Ξj1, ...,Ξj,lj}
is the set of processing stages, and Gj is the sequen-
tial logic that governs the execution of any process
instance of type Πj .

(4) D :
∪n

j=1 Sj →
∏m

i=1{0, ..., Ci} is the resource alloca-
tion function associating every processing stage Ξjk

with an m−dimensional resource allocation vector
D(Ξjk) required for its execution.

We aggregate all processing stages of all process types,
and order them sequentially as Ξ1, ...Ξξ. A state of RAS
Φ is then a ξ-dimensional vector s, where each component



s[k], k = 1, ..., ξ represents the number of process instances
at the corresponding processing stage. The event set of
the RAS includes loading a new process instance to the
corresponding first stage, advancing an existing instance to
the next stage, and unloading a finished instance from its
last stage. With the above state representation and event
set, the dynamics of RAS Φ can be captured by a finite
state automaton G(Φ). We refer the reader to Nazeem and
Reveliotis (2011) for the detailed definition of G(Φ). The
size of RAS Φ is |Φ| = |R|+ ξ +

∑m
i=1 Ci. The number of

states of automaton G(Φ) grows exponentially with |Φ|,
the so-called state explosion problem. Our goal in this
paper is to enumerate and analyze all the states of this
automaton.

Each resource type defines an invariant, i.e., for each state
of the automaton, the number of units occupied by all
running process instances plus the vacant units must be
equal to the capacity of that resource type. Therefore,
every state must satisfy the following inequality:

∀i = 1, . . . ,m,

ξ∑
k=1

s[k] ·D(Ξk)[i] ≤ Ci (1)

Using the terminology of supervisory control theory for
regular languages represented by automata (see, e.g., Cas-
sandras and Lafortune (2008) for formal definitions), a
state is accessible if it can be reached from the initial state
s0 = [0, ..., 0], where there is no process instance running.
A state is co-accessible if it can reach s ∈ SM , where SM

is the set of marked states; in RAS as above, the initial
state s0 is usually the only state that is marked. A deadlock
state is a state without a successor. An RAS is live if every
accessible state is co-accessible. An event of an RAS can
be either controllable or uncontrollable.

Numerous classes of RAS have been proposed in the
literature (Reveliotis, 2005). There are also many classes of
Petri nets that capture different types of RAS. We present
our ideas and results using a special class of RAS that
arises from the modeling of multithreaded software, called
Gadara RAS. Its precise definition is given in Nazeem and
et al (2011), and its definition in Petri net form, called
Gadara net, is given in Liao and et al (2012a). Here, we
summarize the features of Gadara RAS/nets relevant to
the design of our algorithms.

Assumption 1: The execution logic of each process type
Pj corresponds to a connected digraph where there is a
one-to-one mapping between the node set and the stage
set Sj . Every execution of an instance follows a path on
the graph and there are no “AND-fork/join” stages.

Assumption 2: ∀i = 1, . . . ,m, Ci = 1, and ∀k =
1, . . . , ξ,D(Ξk) ∈ {0, 1}m.

Assumption 2 implies that each processing stage has
at most one process instance. Therefore each state is a
binary vector in {0, 1}ξ. This is because in multithreaded
software the resources are mutual-exclusion (mutex ) locks
that can be acquired by one thread at a time. The
controlled variant of Gadara RAS (cf. Liao and et al
(2012a)) allows additional resource types that need not
be unit capacity. It can allocate more than one unit
to a processing stage too, much like a semaphore in
multithreaded programs. However, each processing stage
requires at least one resource type of unit capacity, so

Algorithm 1 Generic state search algorithm (I, F )

Input: starting state set I, forbidden state set F
Output: All states explored from I are flagged
1: queue = I, flag all states in I
2: while queue ̸= ∅ do
3: s = queue.remove()
4: for all s′ ∈ s.neighbor(), s′ /∈ F , s′ not flagged do
5: queue.add(s′), flag s′

6: end for
7: end while

the state is still a binary vector. Finally, the class of
Disjunctive/Conjunctive (D/C)-RAS removes assumption
2 completely. We extend our solution to Controlled Gadara
RAS and D/C-RAS in Section 3.4.

2.2 Generic State Search Algorithm

Algorithm 1 is the generic state search algorithm. It
iteratively explores unflagged neighbors of the head of the
queue, adds them to the queue, and then flag them. If
the queue is first-in-first-out, e.g., a double queue, the
algorithm is breadth-first search. If it is first-in-last-out,
e.g., a stack, the algorithm is depth-first search. This
generic search algorithm is instantiated into the following
three operators on automata.

Accessibility acc({s0}, F ) calculates the set of states
reachable from the initial state s0 through a path that
does not intersect F , the set of forbidden states. In this
case, s.neighbor() is instantiated to calculate all successor
states of s, i.e., forward search. If we start with an empty
set of F , the algorithm returns all reachable states.

Co-accessibility co acc(SM , F ) calculates the set of
states that can reach some state in the marked state set,
SM , through a path that does not intersect F . In this case,
s.neighbor() is instantiated to calculate all predecessor
states of s, i.e., backward search.

Uncontrollable Reach uncon reach(I, ∅) calculates
the set of states that can reach some state in I through
a sequence of uncontrollable transitions, including I.
In this case, similar to the co-accessibility calculation,
s.neighbor() is instantiated to calculate all predecessor
states of s, but through uncontrollable transitions only.

2.3 Supremal Controllable Nonblocking Subset of States

We consider a simple form of supervisory control problem,
where the control specification is avoiding a set of forbid-
den states rather than enforcing a regular language. Using
the three operators described in the previous subsection,
Algorithm 2 shows the iterative algorithm that calculates
the supremal controllable nonblocking subset of states with
respect to partial controllability (see, e.g., (Cassandras and
Lafortune, 2008)). When the input is SM = {s0}, F = ∅,
Algorithm 2 returns the maximally-permissive liveness-
enforcing solution for the RAS (Reveliotis, 2005).

3. SOFTWARE DESIGN

We present our main ideas using the class of Gadara RAS
described in Section 2.1. The extension to D/C-RAS is



Algorithm 2 Supremal Controllable Nonblocking Subset

Input: an RAS of state set S and marked state set
SM ⊆ S, a forbidden state set F

Output: Allowed state set A ⊂ S, A ∩ F = ∅
1: i = 0, F0 = F
2: repeat
3: i = i+ 1
4: Fi = S \ (acc(Fi−1)∩ co acc(SM , Fi−1))
5: Fi = uncon reach(Fi)
6: until Fi = Fi−1

7: A = S \ Fi

discussed in Section 3.4. Some of our techniques can be
generalized to more complex classes of RAS too, but this
is beyond the scope of this paper.

3.1 Representing States by Bits

Memory space instead of computation time is typically
the bottleneck for state exploration. A memory-lean imple-
mentation of Algorithm 1 requires efficient data structures
to store and locate all visited states. A popular idea is
to store each visited state in a compressed form (Wolf,
2007). Exploiting features of RAS, we push the idea to
the extreme by effectively storing each state as one bit. A
one-to-one mapping between the state set and the indices
of the bit array is needed for this efficient storage. Since
we do not know how many reachable states an RAS has
before state exploration, the mapping function has to be
conservative, and allocate a bit array large enough to store
all reachable states. We call the ratio between the size of
the allocated array and the state space size as the inflation
ratio. There is a tradeoff between the inflation ratio and
the computational complexity of the mapping. The next
two subsections present two alternative mapping functions
that optimize time and space, respectively.

Another advantage of the bit representation is that set
operations required for supervisory control in Algorithm 2
can be implemented by logic bit operators that are ex-
tremely fast. For example, calculating “AND” of two bit
arrays of 10 billion entries takes less than half second using
a single thread on a 64-bit 2.26GHz iCore 7 CPU. Fig-
ure 1 shows the Java implementation of Algorithm 2 using
bit operators, where BitSet is the standard JDK class
java.util.BitSet. Marked bits in S represent reachable
states, and marked bits in F represent forbidden states.
After the calculation, marked bits in S are safe, while
those in F are unsafe. We optimize the algorithm at lines
7-9 such that the uncontrollable reach is calculated for
newly generated unsafe states only, at each iteration. This
greatly reduces the computation time in our experiments
where a significant portion of the reachable state space is
unsafe. Finally, counting the number of “1”s of a bit array,
or Hamming weight, is extremely efficient. The function
cardinality() invoked at line 8 currently takes less than
a quarter second to count “1”s in 10 billion bits. The latest
SSE instruction set supports hardware Hamming weight
calculation, which can further reduce the calculation time.

3.2 Cartesian Product Mapping

For Gadara RAS where each state is a binary vector, one of
the simplest mapping functions is to take the decimal value

1: public void supcon(BitSet M, BitSet S, BitSet F) {

2: while (true) {

3: BitSet acc = acc(F); //accessible states

4: BitSet coacc = co_acc(M, F); //co-accessible

5: acc.and(coacc); //accessible and co-accessible

6: acc.xor(S); //unsafe states

7: acc.xor(F); //newly found unsafe states

8: if (acc.cardinality() == 0) break; //no new unsafe

9: F.or(uncon_reach(acc)); //uncontrollable reach

10: }

11: S.andNot(F); //supremal controllable nonblocking set

12: }

Fig. 1. Algorithm 2 implemented using bit representation

of the binary vector as the index. However, this mapping
is impractical for RAS because of its huge inflation ratio.
For example, a Gadara RAS of 10 stages needs an array of
210 = 1024 bits. But if these stages all require one resource
type, i.e., they are the support of the resource invariant,
there are only 10 states. Based on this observation, we
consider the state space defined by the Cartesian product:

∥r1∥ × ∥r2∥ × ...× ∥rm∥ (2)

where ∥ri∥ denotes the support of the invariant defined
by ri, i.e., set {ri} union the set of stages that require
resource type ri, ∥ri∥ = {ri} ∪ {Ξk | D(Ξk)[i] > 0}, or
D(Ξk)[i] = 1 for Gadara RAS. A state (Ξs1 , ...,Ξsm) in
the Cartesian product space indicates that each resource
type ri is occupied by a process instance at stage Ξsi . We
include ri in the support so (2) contains states that have
unallocated resources. We slightly abuse the notation here
and in the remainder of this section by using Ξ for both
stages and resources; note that both are places in the Petri
net representation of an RAS.

The state space defined by (2) subsumes all states that
satisfy the invariant constraint (1), and therefore it in-
cludes all reachable states. Our Cartesian product mapping
scheme works as follows. We allocate one bit for each state
defined by (2). Assuming ∥ri∥ is an ordered set where ri is
the first element, the Cartesian product naturally defines a
total order for the elements in its space, which we employ
for the mapping. More specifically, a state (Ξs1 , ...,Ξsm) in
Cartesian space (2) is mapped to an index integer:

I1+I2 · sizeOf(∥r1∥)+I3 · sizeOf(∥r1∥) · sizeOf(∥r2∥)+ ...

where Ii is the index of Ξsi in ∥ri∥, Ii = 0 if Ξsi = ri,
and sizeOf(∥ri∥) is the cardinality of ∥ri∥. We reverse the
calculation to map an index integer back to a state; such
a reverse calculation is straightforward to implement.

Example 2. Consider a Gadara RAS with two resource
types, denoted by a and b, and six stages, where ∥a∥ =
{a,Ξ1,Ξ2,Ξ3,Ξ4}, ∥b∥ = {b,Ξ4,Ξ5,Ξ6}.

Applying our Cartesian product mapping to Example 2,
we need an array of sizeOf(∥a∥)·sizeOf(∥b∥)=20 bits. Each
state in ∥a∥ × ∥b∥ is mapped to an index as follows:
(a, b) : 0, (Ξ1, b) : 1, . . . , (Ξ4, b) : 4, (a,Ξ4) : 5, (Ξ1,Ξ4) :
6, . . . , (Ξ4,Ξ6) : 19. Obviously all pairs (Ξ4, ?) and (?,Ξ4),
8 in total, correspond to only one state that satisfies the
invariant constraint (1), which is the state containing only
one instance at Ξ4. In general, a state in (2) may not satisfy
the invariant constraint (1) if there are stages requiring
multiple resource types, i.e., ∥ri∥ ∩ ∥rj∥ ̸= ∅. A variant
of the Cartesian product mapping considers the following
state space:



state index

[ ] 0
[Ξ5] 1
[Ξ6] 2
[Ξ4] 3
[Ξ1] 4
[Ξ1,Ξ5] 5
[Ξ1,Ξ6] 6
[Ξ2] 7
[Ξ2,Ξ5] 8
[Ξ2,Ξ6] 9
[Ξ3] 10
[Ξ3,Ξ5] 11
[Ξ3,Ξ6] 12

Fig. 2. Example decision tree and its index mapping

∥r1∥ × ∥r2∥ \ ∥r1∥ × ...× ∥rm∥ \

(
m−1∪
i=1

∥ri∥

)
(3)

This space is smaller than (2) but still larger than (1),
because it still contains states that have instances at
both a stage in ∥r1∥ ∩ ∥r2∥ and a stage in ∥r2∥ \ ∥r1∥.
Recalling the above example, we no longer generate pairs
of the form (•,Ξ4), but the state with one instance at Ξ4

still corresponds to three pairs: (Ξ4, b), (Ξ4,Ξ5), (Ξ4,Ξ6).
The inflation ratios of space defined by (2) and (3) both
grow exponentially in the size of the RAS in the worst
case. The computational complexity of state mapping in
both directions, on the other hand, is polynomial. Our
implementation for the experiments discussed later in the
paper adopts (3), and the experiments show an inflation
ratio as large as 107× when there are billions of states.

3.3 Decision Tree Mapping

The Cartesian product spaces defined by (2) and (3)
are both larger than the solution space defined by the
invariant constraint (1). The latter is very close to the
reachable state space (Nazeem and Reveliotis, 2011). In
our experiments so far, the largest inflation ratio of the
solution space defined by the invariant constraint (1) is
only 2.3× for Gadara RAS. Our decision tree mapping
scheme enumerates the solution space of (1) exactly using
a recursive formula.

First we introduce the concept exact support : JR′K is the
set of stages that require exactly set R′ of resource types.
Formally, ∀R′ ⊆ R, JR′K = {Ξk | D(Ξk)[i] > 0 if ri ∈
R′, otherwise D(Ξk)[i] = 0}. For Gadara RAS,D(Ξk)[i] ∈
{0, 1}. We note that J{ri}K ⊂ ∥ri∥. The former is the set of
stages that require only ri, nothing more, and it does not
include ri. The exact supports of different resource subsets
do not overlap. Therefore, all stages of a given RAS can
be partitioned into exact supports of 2R, the power set of
R. For Example 2, we have J{a}K = {Ξ1,Ξ2,Ξ3}, J{b}K =
{Ξ5,Ξ6}, and J{a, b}K = {Ξ4}.
Theorem 3. Given a Gadara RAS, we define function N :

22
R → N recursively as follows.

N(∅) = 1 (4)

N(R) =N(R \ {R′}) + sizeOf (JR′K) ·
N(R \ {R′′ | R′′ ∈ R, R′′ ∩R′ ̸= ∅}) (5)

where R ⊆ 2R, and R′ ⊆ R is an arbitrary element of
R. Then N(2R) calculates the total number of states that
satisfy (1).

Proof. (sketch) We prove the theorem by showing that
N(R) calculates the number of states that: i) satisfy (1),
and ii) have process instances only on the exact supports
of elements in R, i.e., s[k] ̸= 0 only if ∃R′ ∈ R,Ξk ∈ JR′K.
When R = ∅, the only state that satisfies these two
conditions is the initial state, therefore N(∅) = 1. When
R ̸= ∅, ∀R′ ∈ R, the set of states satisfying i) and ii) for
R consists of states without any process instance on JR′K,
and states with process instances on JR′K. In the latter
case, there is exactly one process instance on JR′K because
of Assumption 2. Since this instance takes all resources in
R′, there is no more process instance on any stage that
requires resources in R′. Hence we derive Equation (5).

Based on Equations (4-5), we construct a binary decision
tree recursively for state mapping. We begin with R = 2R

(all of the power set) and the root node picks a set Rroot

randomly from R. At the left child, Rroot is removed
from R, which corresponds to the left term of (5). At the
right child, any set that intersect with Rroot is removed
from R, which corresponds to the right term of (5). The
recursive process continues until R is empty. Every left
child removes exactly one element from R, while the right
child may remove multiple elements. Therefore the depth
of the tree is the length of the leftmost branch, which is
always |2R| = 2|R|. The element we pick to split each node,
including Rroot, does not affect the tree depth. For a given
Gadara RAS, we begin with only resource sets whose exact
supports are not empty, instead of the entire power set 2R.

Figure 2 shows the decision tree for Example 2. The
elements set and support inside each node correspond to
R′ and JR′K in equation (5). The detailed data structure
is shown in Figure 3a. At the root node, we begin with
R = {{a}, {a, b}, {b}}. Picking {a} for decomposition,
both {a, b} and {b} remain in the left node, while only
{b} remains in the right node. The process continues until
R is empty, and we add a dummy empty node at each leaf
for the convenience of the recursive calculation.

In order to calculate the index for each state, we need
to first find how many states each subtree represents,
calculated by the sum() function in Figure 3a, which
implements equation (5). The sum() value of the root node
is the total number of solutions to the invariant constraint
(1). For Example 2, the sum() values are shown on top of
each node in Figure 2. We cache the value in memory for
each node since it is heavily used by the mapping function,
discussed next.

The index of a state is calculated by walking down the
decision tree, shown as function indexOf() in Figure 3b.
The function node.getSupportIndex(s) at line 7 returns
the index in node.support if state s has a process instance
on the corresponding stage, or -1 if node.support is not
occupied. For Example 2, all 13 stages that satisfy its
resource invariant constraints are shown in the table of
Figure 2 together with their mapped indices. Here a state is
represented by an array of process stages that are occupied
by process instances.

Our decision tree is not balanced since every left child
removes exactly one element from R, while the right
child may remove multiple elements. The length of the
left-most branch is the height of the tree, which in the



1: public class TreeNode {

2: Collection<Resource> set;

3: Stage[] support;

4: TreeNode left, right;

...

5: public long sum() {

6: if (set.isEmpty()) return 1;

7: else return left.sum()+ support.length*right.sum();

8: }

9: }

(a) Data structure of a decision tree node
1: public class Tree {

2: TreeNode root;

...

3: public long indexOf(State s) {

4: long result = 0;

5: TreeNode node = root;

6: while (!node.set.isEmpty()) {

7: int i = node.getSupportIndex(s);

8: if (i <= 0) {

9: node = node.left;

10: } else {

11: result += node.left.sum()+ i*node.right.sum());

12: node = node.right;

13: }

14: }

15: return result;

16: }

17: }

(b) Data structure of a decision tree and its index calculation

Fig. 3. Code snippet of decision tree mapping

worst case equals to 2|R|. Therefore the computational
complexity of mapping is exponential in the number of
resource types (polynomial in the number of stages). The
average complexity depends on the number of resource sets
with nonempty exact support. Our experiments expose
worst case scenarios because randomly generated RAS
tend to have more resource combinations than manually
created ones. It remains an open problem whether the
number of solutions to the invariant constraint (1) can
be calculated in polynomial time. Such a solution would
lead to a polynomial mapping function that would also be
space efficient.

3.4 Extensions

The extension from Gadara RAS to controlled Gadara
RAS (i.e., those with additional non-unit capacity resource
types and corresponding non-unity resource allocation
weights) does not change any algorithm or data structure
discussed so far in this section. The reason is that if a state
is given as a set of stages occupied by one process instance
each, the remaining units of each added non-unit capacity
resource type can be fully recovered from this state repre-
sentation. The only adjustments needed are the data struc-
ture representing a state, and the neighbor() function in
Algorithm 1 that must consider the availability of these
added resources types. Since the full state data structure
is only used temporarily during the search process, the
extra space needed to store the additional resource types is
negligible. Disjunctive/Conjunctive (D/C)-RAS have the
same process structure as Gadara RAS, but do not require
each stage to be associated with a unit capacity resource
type. Therefore, a stage can be occupied by more than
one process instance, and a state is not always a binary

vector. We can extend the Cartesian product mapping to
D/C-RAS. In this case, the i-th element in the Cartesion
product will still correspond to resource type ri , but its set
will include all possible ways to allocate ri to its support
stages. Extension of the decision tree mapping technique
to D/C-RAS is an open issue at this time.

4. IMPLEMENTATION DETAILS

As explained in Section 3, while we store each state as one
bit, the full data structure must be used during the search
phase in order to calculate predecessor and successor
states. Algorithm 1 indicates that these unexplored states
are stored in a queue. We discovered that depth-first search
(using a FILO queue) results in a queue depth as much
as half the size of the reachable state space. Storing half
states in their full data structure form in memory would
negate all the benefits of bit representation. Interestingly,
breadth-first search (using a FIFO queue) reduces the
depth to roughly one tenth of the state space size, but
it is still too much to store in memory. Alternatively we
can store only the neighbor that is going to be explored
next in memory. In this case, the set of neighbors has to
be recalculated each time we backtrack the search tree,
which is a substantial amount of computation. We adopt
an interesting idea reported in Wolf (2007), namely, we
store only events in the queue instead of states. The only
state in memory is the head of the queue. Moving up and
down the search tree is realized by firing events backward
and forward, respectively. Both can be calculated in linear
time. Using depth-first search, we still store the search tree
in a linear queue. A dummy event is inserted to indicate
the boundary of each tree level. Currently, we store each
event by a pointer to its data structure, which is 64 bits or
8 bytes in a 64-bit program. We plan to further optimize
the computation space by sorting all events in an array
and representing each event by its index using a minimum
number of bits, e.g., 8 bits is sufficient for a RAS with no
more than 256 events.

As we scale to the billion state range using the bit rep-
resentation, computation time becomes more noticeable
than computation space. For example, a billion bits occupy
only 119MB of memory but their sequential exploration
takes more than a day in our experiments. To mitigate
this, we have implemented a parallel version of Algo-
rithm 1, which is a non-trivial engineering task for depth-
first search (Reif, 1985). Our idea is to let each thread
maintain its own search tree, i.e., running Algorithm 1
separately. The starting state for exploration is stored in
a shared work queue, which is initialized to the neighbors
of the initial start state. A thread repeatedly grabs a state
from the work queue and explores the state space on its
own. Synchronization is done by the hardware-assisted
command CompareAndSwap, which checks and updates a
bit atomically. We also implemented a load balancing
scheme, where each thread monitors the work queue and
replenishes unexplored states from the top of its search
tree whenever the queue is empty.

5. EXPERIMENTAL RESULTS

Our experiments are based on Gadara RAS randomly
generated using our tool first reported in Wang and et al



(2008), and subsequently used in Nazeem and et al (2011)
and Liao and et al (2011). The generator uses a random
walk algorithm to decide at each step whether to acquire
a new lock or release an existing lock. We have enhanced
our tool to generate branches, with a probability config-
urable as a command line parameter. These branching
transitions are not controllable since they are determined
by program logic and input in multithreaded software.
Because of these uncontrollable transitions, calculating
the maximally-permissive and liveness-enforcing subset of
states requires the iterative procedure of Figure 1; the
typical number of iterations in our experiments was 1-3.

In addition to the two mapping functions discussed in
Section 3, we built a more “conventional” state exploration
algorithm that does not utilize bit representations for the
purpose of performance comparison; it is referred to as
method “non-bit” hereafter. This algorithm stores each
state using an array of pointers that point to stages with
one process instance. We use this representation instead
of a binary vector to model each state because the latter
is very sparse in Gadara RAS. Storing only pointers to
nonzero entries is more efficient. This pointer-based state
representation also benefits the calculation of successor
and predecessor states. We store all visited states in a
hash table in order to locate them efficiently. Hash tables
sacrifice computation space for speed.

Cases 1-10 in Table 1 are tested using a single thread on an
iCore 7 3.07 GHz computer with 24GB of memory. The left
side shows the complexity of the RAS and the right side
shows the space and time needed by the three methods.
The parameters we used to generate these random exam-
ples are available at Gadara (2012) so interested readers
can repeat our experiments. Our examples have an unusu-
ally high percentage of unsafe states because they acquire
resources in a random fashion. In contrast, a real-world
RAS often follows certain rules for resource allocation,
e.g., global ordering, so it is easier to understand and is
less prone to deadlock. Our randomly generated examples
represent worst-case inflation ratios for our algorithms. For
Cartesian mapping, there are more stages that allocate
multiple resources. For tree mapping, there are more states
that satisfy the invariant constraints but are not reachable
since there are too many deadlocks.

Overall, we observe that the decision tree mapping is most
space-efficient among all three algorithms. Its inflation
ratio is less than 3× in all cases. The inflation ratio of
Cartesian mapping varies. Higher percentages of unsafe
states often result in larger inflation ratios. Since our goal
is to understand the performance tradeoffs of different
methods, our implementation currently uses only one 64-
bit integer array to store all bits. This creates an artificial
upper bound of 137 billion bits because the maximum
array index in Java is 231. Therefore, there is no result
for examples requiring more than 137 billion bits using
Cartesian mapping. The non-bit method requires memory
space linear in the number of states, which runs out
of memory on Case 7 and beyond. The memory usage
reported in the table is not fully accurate because of
garbage collection in Java.

The three columns of computation time represent the
calculation of reachable states, supremal controllable non-

1 2 3 4

1

2

3

4
x 10

5

number of threads

th
ro

ug
hp

ut
 (

st
at

es
 / 

se
co

nd
)

 

 
Cartesian mapping
Decision tree mapping

Fig. 4. Scalability with multithreading

blocking subset of states, and the reachable states in the
controlled Gadara RAS. We use the control synthesis al-
gorithm described in Liao and et al (2011) to calculate the
controlled Gadara RAS for each case. This algorithm uses
an MIP formulation to find siphons iteratively, to which we
apply a timeout threshold of 30 minutes. Only the first six
cases finish successfully. The number of additional resource
types added in the controlled Gadara RAS is shown in
the parentheses under the “resources” column. We are
unaware of any published solution that can scale to billions
of states for Gadara RAS. We note, however, that once
all unsafe states are found, there is a “trivial” solution
that avoids each (boundary) unsafe state by exactly one
linear inequality constraint (Nazeem and et al, 2011). This
could result in too many linear inequalities that require
special handling. We do not evaluate our program against
this type of controlled Gadara RAS. The computation
time of all three algorithms is roughly proportional to the
number of states. The non-bit algorithm is fast, especially
with smaller examples, because it does not require state
mapping. Decision tree mapping is the slowest because
of its complex mapping algorithm. For Case 8, Cartesian
mapping calculates reachable states but not unsafe states
because it runs out of memory on the latter (needs three
more bit arrays to store intermediate results).

Figure 4 shows the benefit of multithreading. There are six
test cases. We run both tree mapping and Cartesian prod-
uct mapping for all these cases using one to four threads on
a four-core CPU, and each data point is the average of four
runs. We can see that our multithreading is very effective.
Finally, Cases 11-13 in Table 1 show three examples with
more than a billion states using 16 threads on a dual 4-core
(with hyperthreading) Xeon E5520 2.26Gz workstation
with 96GB of memory. Exploring 2 billion states requires
only a little over 5 hours on this workstation.

6. CONCLUSION

We have presented a framework and specialized algorithms
that make it possible to explicitly generate and explore
state spaces of RAS that have as many as billions of
states, on a commodity computer. Under this framework,
we have exploited structural properties of certain classes
of RAS, known as Gadara nets and designed efficient
mapping functions that enable the representation of each
state by a single bit. Our algorithms not only perform



Table 1: Sample experimental results of state exploration using three different algorithms

RAS states space time (s)
Case resources stages reachable unsafe method bits memory(MB) reachable unsafe controlled

1 18 47 608,768 4,096 Tree 653,312 50 11 31 14
(+8) Cartesian 25,436,160 25 10 28 11

non-bit - 1,916 10 23 11

2 24 113 1,233,346 445,404 Tree 2,242,112 106 35 63 50
(+86) Cartesian 5,038,387,200 6,249 28 58 45

non-bit - 1,375 17 37 30

3 12 148 2,342,805 2,055,995 Tree 5,070,019 160 37 21 70
(+636) Cartesian 16,547,328,000 12,404 28 25 71

non-bit - 1,398 22 36 39

4 20 127 3,631,081 3,113,562 Tree 5,705,565 1,244 78 86 57
(+226) Cartesian 2,682,408,960 3,212 64 71 50

non-bit - 1,725 52 88 36

5 10 150 10,241,714 5,392,441 Tree 12,310,910 65 248 657 1,283
(+511) Cartesian 7,287,084,000 4,190 164 433 1,238

non-bit - 3,107 235 589 962

6 24 86 15,567,136 10,212,724 Tree 15,568,720 649 463 476 544
(+175) Cartesian 2,786,918,400 2,500 370 408 521

non-bit - 5,748 367 887 458

7 20 208 45,469,437 44,685,596 Tree 67,267,687 390 1,326 314 -
Cartesian 1.65E+12 - - - -

8 19 129 109,308,048 43,773,264 Tree 126,001,256 557 3,351 6,102 -
Cartesian 55,738,368,000 15,268 2,917 - -

9 25 251 431,175,853 427,807,294 Tree 795,837,265 7,528 23,318 2,635 -
Cartesian 1.54E+14 - - - -

10 25 388 945,575,159 938,579,554 Tree 1,581,800,715 4,491 61,885 11,762 -
Cartesian 7.42E+16 - - - -

11 20 220 2,310,010,077 1,849,976,998 Tree 2,685,593,093 16GB 323m 262m
12 25 298 6,090,459,834 5,005,028,660 Tree 13,937,653,999 38GB 18h 22h
13 25 495 46,551,271,496 45,800,121,633 Tree 89,269,794,166 70GB 142h 21h

the generation of the reachable state space, but they also
permit efficient analysis and control synthesis, such as the
calculation of the supremal controllable sublanguage, a
core operation in control synthesis problems. Our software
tools are available open source at Gadara (2012).

REFERENCES

Burch, J.R. and et al (1992). Symbolic model checking:
1020 states and beyond. Inf. Comput., 98(2), 142–170.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to Discrete Event Systems. Springer, second edition.

Cimatti, A. and Roveri, M. (2000). Conformant planning
via symbolic model checking. J. Artif. Intell. Res., 13,
305–338.

Ezpeleta, J. and et al (1995). A petri net based deadlock
prevention policy for flexible manufacturing systems.
IEEE Trans. on Robot. and Automat., 11(2), 173–184.

Ezpeleta, J. and et al (2002). A banker’s solution for
deadlock avoidance in FMS with flexible routing and
multiresource states. IEEE Trans. on Robot. and Au-
tomat., 18(4), 621–625.

Gadara (2012). http://gadara.eecs.umich.edu/.
Ghaffari, A. and et al (2003). Design of a live and
maximally permissive petri net controller using the
theory of regions. IEEE Trans. on Robot. and Automat.,
19(1), 137–141.

Jhala, R. and Majumdar, R. (2009). Software model
checking. ACM Comput. Surv., 41(4), 21:1–21:54.

Li, Z., Zhou, M., and Wu, N. (2008). A survey and compar-
ison of Petri net-based deadlock prevention policies for
flexible manufacturing systems. IEEE Trans. Systems,
Man, Cybernetics C, 38(2), 173–188.

Liao, H. and et al (2011). Deadlock-avoidance control
of multithreaded software: An efficient siphon-based
algorithm for Gadara Petri nets. In IEEE CDC.

Liao, H. and et al (2012a). Concurrency bugs in multi-
threaded software: Modeling and analysis using Petri
nets. Journal of DEDS. To appear.

Liao, H. and et al (2012b). Optimal liveness-enforcing
control of a class of petri nets arising in multithreaded
software. IEEE Trans. on Automat. Ctrl. To appear.

Nazeem, A. and et al (2011). Designing compact and
maximally permissive deadlock avoidance policies for
complex resource allocation systems. IEEE Trans. on
Automat. Ctrl., 56(8), 1818 –1833.

Nazeem, A. and Reveliotis, S. (2011). A practical approach
for maximally permissive liveness-enforcing supervision.
IEEE Trans. Automat. Sci. and Eng., 8(4), 766–779.

Reif, J.H. (1985). Depth-first search is inherently sequen-
tial. Inf. Process. Lett., 20(5), 229–234.

Reveliotis, S.A. (2005). Real-Time Management of Re-
source Allocation Systems: A Discrete-Event Systems
Approach. Springer.

Wang, Y. and et al (2008). The application of supervisory
control to deadlock avoidance in concurrent software. In
WODES.

Wang, Y. and et al (2009). The theory of deadlock
avoidance via discrete control. In Proc. of Symposium
on Principles of Programming Languages.

Wang, Y. and Wu, Z. (2003). Deadlock avoidance control
synthesis in manufacturing systems using model check-
ing. In American Control Conference, 1702 – 1703.

Wolf, K. (2007). Generating Petri net state spaces. In 28th
Conf. on Applications and Theory of Petri Nets.


